Module 2 - Assembly

Lecture 10: Genomics

Bioinformatics Algorithms CSC4181/6802

Most slides used are from Ben Langmead's Teaching Materials (www.langmead-lab.org/teaching-materials)

Sequencing Technology

First generation

[^0]
Sanger Sequencing

\square

PCR with fluorescent, chain-terminating ddNTPs

Original
DNA sequence,
PCR amplified \& denatured

Size separation by capillary gel electrophoresis

Laser excitation \& detection by sequencing machine
https://www.sigmaaldrich.com/CA/en/technical-documents/proto col/genomics/sequencing/sanger-sequencing

Sequencing Technology

First generation

Sanger sequencing
 Maxam and Gilbert
 Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis
$500-1,000 \mathrm{bp}$ fragments

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing by Synthesis

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

PacBio Sequencing

https://www.pacb.com/wp-content/uploads/SMRT-Sequencing-Brochure-Deliverin g-highly-accurate-long-reads-to-drive-discovery-in-life-science.pdf

Nanopore Sequencing

https://www.nature.com/articles/s41 587-021-01108-x/figures/1

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Capturing measurement error: FASTQ

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

https://www.drive5.com/usearch/manual/fastq_files.html https://learn.gencore.bio.nyu.edu/ngs-file-formats/quality-scores/

Assembly

Referenco genoma

How do we assemble puzzle without the benefit of knowing what the finished product should look like?
(That's what the Human Genome Project had to do!)

De novo shotgun assembly

Assembly

Whole-genome "shotgun" sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Then fragments it:

Fragment:	GGCGTCTA TATCTCGG	CTCTAGGCCCTC ATTTTTT	
	GGC GTCTATAT	CTCGGCTCTAGGCCCTCATTTTTT	
	GGCGTC TATATCT	CGGCTCTAGGCCCT	CATTTTTT
	GGCGTCTAT ATCTCGGCTCTAG	GCCCTCA	TTTTTTT

"Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a shotgun

Assembly

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT $|$

Assembly

	CTAGGCCCTCAATTTTT
	GGCGTCTATATCT
	CTCTAGGCCCTCAATTTTT
Reconstruct this	TCTATATCTCGGCTCTAGG
	GGCTCTAGGCCCTCATTTTT
	CTCGGCTCTAGCCCCTCATTTT
	TATCTCGACTCTAGGCCCTCA
	GGCGTCGATATCT
	TATCTCGACTCTAGGCC
GGCGTCTATATCTCG	
$\longrightarrow ? ~$	

Coverage

CTAGGCCCTCAATTTTT

 CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCCTCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
Coverage $=5$

Coverage
CTAGGCCCTCAATTTTT CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
Coverage $=5$

CTAGGCCCTCAATTTTT CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT 35 bases
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
Average coverage $=177$ / $35 \approx 5$-fold

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

TCTATATCTCGGCTCTAGG ||l|||| |||||| TATCTCGACTCTAGGCC

First law of assembly

If a suffix of read A is similar to a prefix of read B...

...then A and B might overlap in the genome

> TCTATATCTCGGCTCTAGG
> GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT TATCTCGACTCTAGGCC

TCTATATCTCGGCTCTAGG |||||||||||| TATCTCGACTCTAGGCC \uparrow

Why the differences?

1. Sequencing errors
2. Ploidy: e.g. humans have 2 copies of each chromosome, and copies can differ

Second law of assembly

More coverage leads to more and longer overlaps

```
CTAGGCCCTCAATTTTT CTCGGCTCTAGCCCCTCATTTT TCTATATCTCGGCTCTAGG GGCGTCGATATCT less coverage GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT CTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCT

\section*{TCTATATCTCGGCTCTAGG ||||||| |||||| TATCTCGACTCTAGGCC}

\section*{TCTATATCTCGGCTCTAGG \(\|\|\|\|\|\|\|\|\) TATCTCGACTCTAGGCC}

\section*{TATCTCGACTCTAGGCC |||| |||||| || CTCGGCTCTAGCCCCTCAT}

\section*{Directed graph}


Directed graph


\section*{Overlap graph}

Each node is a read

\section*{CTCGGCTCTAGCCCCTCATTTT}

Draw edge \(A\)-> \(B\) when suffix of \(A\) overlaps prefix of \(B\)

\section*{Overlap graph}

Nodes: all 6-mers from GTACGTACGAT
Edges: overlaps of length \(\geq 4\)


\section*{Overlap graph}

Nodes: all 6-mers from GTACGTACGAT
Edges: overlaps of length \(\geq 4\)


\section*{Overlap Layout Consensus}


\section*{Finding overlaps}

Overlap: Suffix of \(X\) of length \(\geq l\) matches prefix of \(Y ; l\) is given
Naive: look in \(X\) for occurrences of \(Y\) 's length- \(l\) prefix. Extend matches to the right to confirm whether entire suffix of \(X\) matches.


See suffixPrefixMatch function in HW5 Q4 (Assembly Challenge)

\section*{Finding overlaps}

\section*{With suffix tree?}

Given a collection of strings \(S\), for each string \(x\) in \(S\) find all overlaps involving a prefix of \(x\) and a suffix of another string \(y\)

\section*{Finding overlaps with suffix tree}

Generalized suffix tree for \(\{\) "GACATA", "ATAGAC" \(\} \quad\) GACATA\$ \({ }_{0} A T A G A C \$ 1\)


\section*{Finding overlaps with suffix tree}

Generalized suffix tree for \(\{\) "GACATA", "ATAGAC" \(\} \quad\) GACATA\$ \({ }_{0} A T A G A C \$ 1\)


\section*{Finding overlaps with suffix tree}

Generalized suffix tree for \(\{\) "GACATA", "ATAGAC" \(\} \quad\) GACATA\$0ATAGAC\$1


\section*{Finding overlaps with suffix tree}


Assume for given string pair we report only the longest suffix/prefix match
Time to build generalized suffix tree: \(O(N)\)
... to walk down red paths: \(\quad O(N)\)
... to find \& report overlaps (green): O(a)
Overall:
\(\mathrm{O}(N+a)\)

\section*{Finding overlaps}

What about approximate suffix/prefix matches?

Dynamic programming

\section*{Finding overlaps with dynamic programming}

\section*{X: CTCGGCCCTAGG ||| ||||| \\ Y: GGCTCTAGGCCC}

Use global alignment recurrence and score function


How do we force it to find prefix / suffix matches?

\section*{Finding overlaps with dynamic programming}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(s(a, b)\) & A & C & G & T & - \\
\hline A & 0 & 4 & 2 & 4 & 8 \\
\hline C & 4 & 0 & 4 & 2 & 8 \\
\hline G & 2 & 4 & 0 & 4 & 8 \\
\hline T & 4 & 2 & 4 & 0 & 8 \\
\hline - & 8 & 8 & 8 & 8 & \\
\hline
\end{tabular}

How to initialize first row \& column so suffix of \(X\) aligns to prefix of \(Y\) ?

First column gets \(0 s\) (any suffix of \(X\) is possible)

First row gets \(\infty\) s (must be a prefix of \(Y\) )

Backtrace from last row
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & - & G & G & C & T & C & T & A & G & G & C & C & C \\
\hline & & 0 & \(\infty\) \\
\hline & C & 0 & 4 & 12 & 20 & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{STGGCCCTAGG
\(Y: \quad| || || |\)
\(Y: \quad\) GGCTCTAGGCCC}} \\
\hline & T & 0 & 4 & 8 & 14 & & & & & & & & & \\
\hline & C & & 4 & 8 & 8 & & & & & & & & & \\
\hline & G & 0 & & 4 & 12 & & & & & & & & & \\
\hline & G & 0 & 0 & & 8 & 10 & & <4 & <0 & 30 & So & 44 & K & \\
\hline \multirow[t]{7}{*}{\(X\)} & C & 0 & 4 & 4 & 9 & 8 & 16 & 18 & 26 & 30 & 34 & 36 & 44 & 52 \\
\hline & C & 0 & 4 & 8 & 4 & 2 & 8 & 16 & 22 & 30 & 34 & 34 & 36 & 44 \\
\hline & C & 0 & 4 & 8 & 8 & 6 & 2 & 10 & 18 & 26 & 34 & 34 & 34 & 36 \\
\hline & T & 0 & 4 & 8 & 10 & 8 & 8 & 2 & 10 & 18 & 26 & 34 & 36 & 36 \\
\hline & A & 0 & 2 & 6 & 12 & 14 & 12 & 10 & 2 & 10 & 18 & 26 & 34 & 40 \\
\hline & G & 0 & 0 & 2 & 10 & 16 & 18 & 16 & 10 & ? & 10 & 18 & 26 & 34 \\
\hline & G & 0 & 0 & 0 & 6 & 14 & 20 & 22 & 18 & 10 & ) & 10 & 18 & 26 \\
\hline
\end{tabular}

\section*{Finding overlaps with dynamic programming}

Say there are \(d\) reads of length \(n\), total length \(N=d n\), and \(a\) is total number of pairs with an overlap
\begin{tabular}{ll} 
\# overlaps to try: & \(O\left(d^{2}\right)\) \\
Size of each DP matrix: & \(O\left(n^{2}\right)\) \\
Overall: & \(O\left(d^{2} n^{2}\right)\), or \(O\left(N^{2}\right)\)
\end{tabular}

Contrast \(\mathrm{O}\left(N^{2}\right)\) with suffix tree: \(\mathrm{O}(N+a)\), but where \(a\) is worst-case \(\mathrm{O}\left(d^{2}\right)\)
Real-world overlappers mix the two; index filters out vast majority of non-overlapping pairs, dynamic programming used for remaining pairs

\section*{Overlap Layout Consensus}


\section*{Layout}

Overlap graph is big and messy. Contigs don't"pop out" at us.
Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season
\(l=4, k=7\)


\section*{Layout}

Anything redundant about this part of the overlap graph?

Some edges can be inferred (transitively) from other edges
E.g. green edge can be inferred from blue


\section*{Layout}

Remove transitively inferrable edges, starting with edges that skip one node:


Before:


\section*{Layout}

Remove transitively inferrable edges, starting with edges that skip one node:


After:


\section*{Layout}

Now remove edges that skip one or two nodes:


After:


Even simpler

\section*{Layout}

Emit contigs corresponding to the non-branching stretches


\section*{Layout}

Must handle subgraphs that are spurious, e.g. because of sequencing error


Mismatch could be due to sequencing error or repeat. Since the path through \(\mathbf{b}\) ends abruptly we might conclude it's an error and prune \(\mathbf{b}\).

\section*{Overlap Layout Consensus}


\section*{Consensus}
\begin{tabular}{lll} 
TAGATTACACAGATTACTGA TTGATGGCGTAA CTA \\
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA \\
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA & Take reads that make \\
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA & up a contig and line \\
them up \\
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
\end{tabular}

Complications: (a) sequencing error, (b) ploidy

\section*{Overlap Layout Consensus}


OLC drawbacks
Building overlap graph is slow. We saw \(\mathrm{O}(N+a)\) and \(\mathrm{O}\left(N^{2}\right)\) approaches.
Overlap graph is big; one node per read, \# edges can grow superlinearly with \# reads

Sequencing datasets are \(\sim\) 100s of millions or billions of reads```


[^0]:    Sanger sequencing
    Maxam and Gilbert
    Sanger chain termination

