
Module 2 - Assembly

Lecture 10: Genomics

Most slides used are from Ben Langmead’s Teaching
Materials (www.langmead-lab.org/teaching-materials)

Bioinformatics Algorithms CSC4181/6802

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sanger Sequencing

https://www.sigmaaldrich.com/CA/en/technical-documents/proto
col/genomics/sequencing/sanger-sequencing

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing by Synthesis

https://www.intechopen.com/chapters/49419

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

PacBio Sequencing

https://www.pacb.com/wp-content/uploads/SMRT-Sequencing-Brochure-Deliverin
g-highly-accurate-long-reads-to-drive-discovery-in-life-science.pdf

Nanopore Sequencing

https://www.nature.com/articles/s41
587-021-01108-x/figures/1

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Capturing measurement error: FASTQ

Quality value Q is an
integer representation of
the probability p that a
corresponding base call is
incorrect

https://www.drive5.com/usearch/manual/fastq_files.html
https://learn.gencore.bio.nyu.edu/ngs-file-formats/quality-scores/

Input DNA

Reads Reference genome

+

Assembly

X
How do we assemble
puzzle without the
benefit of knowing
what the finished
product should look
like?

(That's what the
Human Genome
Project had to do!)

De novo shotgun assembly

Assembly

Whole-genome “shotgun” sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Then fragments it:

“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun

Assembly

Reconstruct this
From
these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

Reconstruct this
From
these

???????????????????????????????????

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage = 5

Coverage

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage = 5

Coverage

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TATCTCGACTCTAGGCC
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT 35 bases

177 bases

Average coverage = 177 / 35 ≈ 5-fold

 TCTATATCTCGGCTCTAGG

 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

First law of assembly

If a suffix of read A is similar to a prefix of read B...

...then A and B might overlap in the genome

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

Why the differences?

1. Sequencing errors
2. Ploidy: e.g. humans have 2 copies of each

chromosome, and copies can differ

Second law of assembly

More coverage leads to more and longer overlaps

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

 CTAGGCCCTCAATTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TCTATATCTCGGCTCTAGG
GGCGTCGATATCT

 CTAGGCCCTCAATTTTT
 GGCTCTAGGCCCTCATTTTTT
 CTCGGCTCTAGCCCCTCATTTT
 TATCTCGACTCTAGGCCCTCA
 TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCT

less coverage

more coverage

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

 TCTATATCTCGGCTCTAGG
 ||||||| |||||||
 TATCTCGACTCTAGGCC

 TATCTCGACTCTAGGCC
 |||| |||||| ||
 CTCGGCTCTAGCCCCTCAT

Directed graph

PoloniusHamlet

Node
Edge

Directed graph

Polonius

Ophelia

Laertes

Hamlet

Gertrude
King

Hamlet

Claudius

Overlap graph

Each node is a read

Draw edge A -> B when suffix of A overlaps prefix of B

CTCGGCTCTAGCCCCTCATTTT

CTCGGCTCTAGCCCCTCATTTT

GGCTCTAGGCCCTCATTTTTT

Overlap graph

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length ≥4

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Overlap graph

Nodes: all 6-mers from GTACGTACGAT

Edges: overlaps of length ≥4

TACGAT

ACGTAC

GTACGT

4

CGTACG
5

GTACGA

4

TACGTA
54 4

5

4

4

5

5

5

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Coalesce paths into contigs

Pick nucleotide sequence for each contig

Finding overlaps

Overlap: Suffix of X of length ≥l matches prefix of Y; l is given

Naive: look in X for occurrences of Y’s length-l prefix. Extend matches to
the right to confirm whether entire suffix of X matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in X

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to right; confirm a length-6
prefix of Y matches a suffix of X

See suffixPrefixMatch function in HW5 Q4 (Assembly Challenge)

Finding overlaps

With suffix tree?

Given a collection of strings S, for each string x in S find all
overlaps involving a prefix of x and a suffix of another string y

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = GACATA (first string). From root,
follow path labeled with query.

Green edge implies length-3 suffix of second
string equals length-3 prefix of queryATAGAC

 |||
 GACATA

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = ATAGAC (second string). From
root, follow path labeled with query.

Green edge implies length-3 suffix of first
string equals length-3 prefix of queryGACATA

 |||
 ATAGAC

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a prefix/suffix match
involving prefix of query string and suffix of
string ending in the separator.

Strategy:

(1) Build tree
(2)

Finding overlaps with suffix tree

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Say there are d reads of length n, total length
N = dn, and a = # read pairs that overlap

Time to build generalized suffix tree: O(N)

... to walk down red paths: O(N)

... to find & report overlaps (green): O(a)

Overall: O(N + a)

Assume for given string pair we report only the longest suffix/prefix match

Finding overlaps

What about approximate suffix/prefix
matches?

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Dynamic programming

Finding overlaps with dynamic programming

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

A C G T -
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
- 8 8 8 8

s(a, b)

D[i, j] = min

8
<

:

D[i� 1, j] + s(x[i� 1],�)
D[i, j � 1] + s(�, y[j � 1])
D[i� 1, j � 1] + s(x[i� 1], y[j � 1])

How do we force it to find prefix / suffix matches?

Use global alignment recurrence and score function

Finding overlaps with dynamic programming

- G G C T C T A G G C C C
-
C
T
C
G
G
C
C
C
T
A
G
G

X

Y

How to initialize first row & column
so suffix of X aligns to prefix of Y? 0

0
0
0
0
0
0
0
0
0
0
0
0

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

First column gets 0s
(any suffix of X is possible)

First row gets ∞s
(must be a prefix of Y)

4 12 20 28 36 44 52 60 68 76 84 92
4 8 14 20 28 36 44 52 60 68 76 84
4 8 8 16 20 28 36 44 52 60 68 76
0 4 12 12 20 24 30 36 44 52 60 68
0 0 8 16 16 24 26 30 36 44 52 60
4 4 0 8 16 18 26 30 34 36 44 52
4 8 4 2 8 16 22 30 34 34 36 44
4 8 8 6 2 10 18 26 34 34 34 36
4 8 10 8 8 2 10 18 26 34 36 36
2 6 12 14 12 10 2 10 18 26 34 40
0 2 10 16 18 16 10 0 10 18 26 34
0 0 6 14 20 22 18 10 2 10 18 26

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Backtrace from last row

A C G T -
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
- 8 8 8 8

s(a, b)

Finding overlaps with dynamic programming

overlaps to try: O(d2)

Size of each DP matrix: O(n2)

Overall: O(d2n2), or O(N2)

Say there are d reads of length n, total length N = dn, and a is total
number of pairs with an overlap

Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(d2)

Real-world overlappers mix the two; index filters out vast majority of
non-overlapping pairs, dynamic programming used for remaining pairs

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Coalesce paths into contigs

Pick nucleotide sequence for each contig

Layout

Overlap graph is big and messy. Contigs don’t “pop out” at us.

Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season

l = 4, k = 7

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

ry_thin

thing_t

4

thing

5y_thing

6

urn_tur

rn_turn

6

_turn_t

4

n_turn_

5

a_seaso

_season

6

5

6

turn_tu

4

turn_th

4

here_is

e_is_a_

4

ere_is_

6

re_is_a

5

ing_tur

5hing_tu

6

ng_turn

4

urn_the

there

4

n_there

5rn_ther

6

5

4

there_i

6

very_th

5ery_thi

6

4

every

5

4

every_t

6

6

4

5

is_a_se

5

s_a_sea

4

_is_a_s

6

6

4

5

4

6

5

5

4

5

4

66

4

6

5

o_every

4

6

5

4

6

g_turn_

5

5

6

4

4

_a_seas

5

6

5

6

4

6

5

4

4

4

6

55

6

5

4

6

5

5

44

6

to_ever

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

5

6

4

6

4

5

4

4

6

55

Layout

Anything redundant about this part of the
overlap graph?

Some edges can be inferred (transitively) from
other edges

E.g. green edge can be inferred from blue

Layout

Remove transitively inferrable edges, starting with edges that skip one
node:

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

Before:

x

Layout

ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6 ur
n_
th
e

rn
_t
he
r6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

in
g_
tu
r

4

e_
is_
a_

_i
s_
a_
s

6

6

4

4

6

_t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h6

n_
th
er
e

4

6

o_
ev
er
y 4

6

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

4 4

6

6

g_
tu
rn
_

4

_a
_s
ea
s

6

6

to
_e
ve
r

6

6

6

4

4

6

4

6

6

44

4

6

After:

x
Remove transitively inferrable edges, starting with edges that skip one
node:

Layout
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6

x x

Even simpler

After:

Now remove edges that skip one or two nodes:

Layout

Emit contigs corresponding to the non-branching stretches
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6
to_every_thing_turn_ turn_there_is_a_season
Contig 1 Contig 2

Unresolvable repeat

Layout

Must handle subgraphs that are spurious, e.g. because of sequencing
error

Possible repeat
boundary

Mismatcha
b

Mismatch could be due to sequencing error or repeat. Since the path
through b ends abruptly we might conclude it’s an error and prune b.

...

a

bprune

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Consensus

Take reads that make
up a contig and line
them up

Complications: (a) sequencing error, (b) ploidy

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
Take consensus, i.e.
majority vote

Overlap Layout Consensus

Overlap

Layout

Consensus

OLC drawbacks

Building overlap graph is slow. We saw O(N + a) and O(N2) approaches.

Sequencing datasets are ~ 100s of millions or billions of reads

Overlap graph is big; one node per read, # edges can grow
superlinearly with # reads

Build overlap graph

Coalesce paths into contigs

Pick nucleotide sequence for each contig

