Module 2 - Assembly

Lecture 10: Genomics

Bioinformatics Algorithms CSC4181/6802

Most slides used are from Ben Langmead's Teaching Materials (www.langmead-lab.org/teaching-materials)

Sequencing Technology

First generation

Sanger sequencing Maxam and Gilbert Sanger chain termination

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sanger Sequencing

https://www.sigmaaldrich.com/CA/en/technical-documents/proto col/genomics/sequencing/sanger-sequencing

Sequencing Technology

First generation

Sanger sequencing Maxam and Gilbert Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis

500-1,000 bp fragments

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

Sanger sequencing Maxam and Gilbert Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis

500-1,000 bp fragments

454, Solexa, Ion Torrent, Illumina

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing by Synthesis

https://www.intechopen.com/chapters/49419

Sequencing Technology

Sanger sequencing Maxam and Gilbert Sanger chain termination

Infer nucleotide identity using dNTPs, then visualize with electrophoresis

500-1,000 bp fragments

454, Solexa, Ion Torrent, Illumina

High throughput from the parallelization of sequencing reactions

~50-500 bp fragments

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

500-1,000 bp fragments

~50-500 bp fragments

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

PacBio Sequencing

https://www.pacb.com/wp-content/uploads/SMRT-Sequencing-Brochure-Deliverin g-highly-accurate-long-reads-to-drive-discovery-in-life-science.pdf

Nanopore Sequencing

https://www.nature.com/articles/s41 587-021-01108-x/figures/1

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Sequencing Technology

https://www.pacb.com/blog/the-evolution-of-dna-sequencing-tools/

Capturing measurement error: FASTQ

 $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

https://www.drive5.com/usearch/manual/fastq_files.html https://learn.gencore.bio.nyu.edu/ngs-file-formats/quality-scores/

Input DNA

Reference genome

How do we assemble puzzle without the benefit of knowing what the finished product should look like?

(That's what the Human Genome Project had to do!)

De novo shotgun assembly

Whole-genome "shotgun" sequencing first copies the input DNA:

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Then fragments it:

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTT

"Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a shotgun

CTAGGCCCTCAATTTT CTCTAGGCCCTCAATTTT GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA **Reconstruct this** TATCTCGACTCTAGGCC **TCTATATCTCGGCTCTAGG** GGCGTCTATATCTCG GGCGTCGATATCT GGCGTCTATATCT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

From these

Reconstruct this

CTAGGCCCTCAATTTTT GGCGTCTATATCT CTCTAGGCCCTCAATTTTT TCTATATCTCGGCTCTAGG GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGCCCCTCATTT TATCTCGACTCTAGGCCCTCA GGCGTCGATATCT TATCTCGACTCTAGGCC GGCGTCTATATCTCG

From these

Coverage

CTAGGCCCTCAATTTT CTCTAGGCCCTCAATTTT GGCTCTAGGCCCTCATTTTT **CTCGGCTCTAGCCCCTCATTTT** TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC **TCTATATCTCGGCTCTAGG** GGCGTCTATATCTCG GGCGTCGATATCT GGCGTCTATATCT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT Coverage = 5

Coverage

CTAGGCCCTCAATTTT CTCTAGGCCCTCAATTTT GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC **TCTATATCTCGGCTCTAGG** GGCGTCTATATCTCG GGCGTCGATATCT GGCGTCTATATCT **GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT**

Coverage = 5

CTAGGCCCTCAATTTT CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TATCTCGACTCTAGGCC 177 bases TCTATATCTCGGCTCTAGG GGCGTCTATATCTCG GGCGTCGATATCT 35 bases GGCGTCTATATCT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

Average coverage = $177 / 35 \approx 5$ -fold

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCC

TCTATATCTCGGCTCTAGG |||||||||||||||||| TATCTCGACTCTAGGCC

First law of assembly

If a suffix of read A is similar to a prefix of read B...

TCTATATCTCGGCTCTAGG

...then A and B might overlap in the genome

TCTATATCTCGGCTCTAGG GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT TATCTCGACTCTAGGCC

TCTATATCTCGGCTCTAGG

Why the differences?

- 1. Sequencing errors
- 2. Ploidy: e.g. humans have 2 copies of each chromosome, and copies can differ

Second law of assembly

More coverage leads to more and longer overlaps

CTAGGCCCTCAATTTTT **CTCGGCTCTAGC**CCCTCATTTT **TCTATATCTCGGCTCTAGG** less coverage GGCGTCGATATCT GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT CTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTT CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA TCTATATCTCGGCTCTAGG GGCGTCTATATCTCG GGCGTCTATATCT more coverage

TATCTCGACTCTAGGCC |||||||||||||| CTCGGCTCTAGCCCCTCAT

Directed graph

Directed graph

Overlap graph

Each node is a read

CTCGGCTCTAGCCCCTCATTTT

Draw edge A -> B when suffix of A overlaps prefix of B

Overlap graph

Nodes: all 6-mers from GTACGTACGATEdges: overlaps of length ≥ 4

Overlap graph

Nodes: all 6-mers from GTACGTACGATEdges: overlaps of length ≥ 4

Overlap Layout Consensus

Finding overlaps

Overlap: Suffix of X of length $\geq l$ matches prefix of Y; l is given

Naive: look in *X* for occurrences of *Y*'s length-*l* prefix. Extend matches to the right to confirm whether entire suffix of *X* matches.

See suffixPrefixMatch function in HW5 Q4 (Assembly Challenge)

Finding overlaps

With suffix tree?

Given a collection of strings *S*, for each string *x* in *S* find all overlaps involving a prefix of *x* and a suffix of another string *y*

Generalized suffix tree for { "GACATA", "ATAGAC" } GACATA\$₀ATAGAC\$₁

Let query = GACATA (first string). From root, follow path labeled with query.

Green edge implies length-3 suffix of second string equals length-3 prefix of query

ATAGAC ||| GACATA

TA

\$₀

3

GAC\$₁

7

\$₀

 $ATA\$_0 |\$_1$

11

5

1

ΓА

\$₀

ATAGAC

GAC\$₁

7

\$₀

 $ATA\$_0 |\$_1$

11

GACATA

5

1

Generalized suffix tree for { "GACATA", "ATAGAC" } GACATA\$₀ATAGAC\$₁

Let query = ATAGAC (second string). From root, follow path labeled with query.

Green edge implies length-3 suffix of first string equals length-3 prefix of query

5

1

11

3

7

Generalized suffix tree for { "GACATA", "ATAGAC" } GACATA\$₀ATAGAC\$₁

Strategy:

(1) Build tree

(2) For each string: Walk down from root and report any outgoing edge labeled with a separator. Each corresponds to a prefix/suffix match involving prefix of query string and suffix of string ending in the separator.

Assume for given string pair we report only the longest suffix/prefix match

Time to build generalized suffix tree:O(N)... to walk down red paths:O(N)... to find & report overlaps (green):O(a)Overall:O(N + a)

Finding overlaps

What about *approximate* suffix/prefix matches?

 X: CTCGGCCCTAGG

 |||

 |||

 Y:

 GGCTCTAGGCCC

Dynamic programming

Finding overlaps with dynamic programming

 X: CTCGGCCCTAGG

 |||

 Y:

 GGCTCTAGGCCC

Use global alignment recurrence and score function

$$D[i, j] = \min \begin{cases} D[i - 1, j] + s(x[i - 1], -) \\ D[i, j - 1] + s(-, y[j - 1]) \\ D[i - 1, j - 1] + s(x[i - 1], y[j - 1]) \end{cases}$$

How do we force it to find prefix / suffix matches?

Finding overlaps with dynamic programming

How to initialize first row & column so suffix of *X* aligns to prefix of *Y*?

First column gets 0s (any suffix of *X* is possible)

First row gets ∞ s (must be a prefix of *Y*)

Backtrace from last row

Y

Finding overlaps with dynamic programming

Say there are *d* reads of length *n*, total length N = dn, and *a* is total number of pairs with an overlap

# overlaps to try:	O(<i>d</i> ²)
Size of each DP matrix:	O(<i>n</i> ²)
Overall:	O(<i>d</i> ² <i>n</i> ²), or O(<i>N</i> ²)

Contrast O(N²) with suffix tree: O(N + a), but where a is worst-case O(d²)

Real-world overlappers mix the two; index filters out vast majority of non-overlapping pairs, dynamic programming used for remaining pairs

Overlap Layout Consensus

Overlap graph is big and messy. Contigs don't "pop out" at us.

Below: part of the overlap graph for to_every_thing_turn_turn_there_is_a_season l = 4, k = 7

Anything redundant about this part of the overlap graph?

Some edges can be *inferred* (*transitively*) from other edges

E.g. green edge can be inferred from blue

Remove transitively inferrable edges, starting with edges that skip one node:

Before:

Remove transitively inferrable edges, starting with edges that skip one node:

After:

Now remove edges that skip one or two nodes:

After:

Even simpler

Emit *contigs* corresponding to the non-branching stretches

Must handle subgraphs that are spurious, e.g. because of sequencing error

Mismatch could be due to sequencing error or repeat. Since the path through **b** ends abruptly we might conclude it's an error and prune **b**.

Overlap Layout Consensus

Consensus

Complications: (a) sequencing error, (b) ploidy

Overlap Layout Consensus

OLC drawbacks

Building overlap graph is slow. We saw O(N + a) and $O(N^2)$ approaches.

Overlap graph is big; one node per read, # edges can grow superlinearly with # reads

Sequencing datasets are ~ 100s of millions or billions of reads